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A backprojection algorithm for electrical
impedance imaging

Fadil Santosa*
Department of Mathematical Sciences

University of Delaware
Newark, DE 19716

and

Michael Vogeliust
Department of Mathematics

University of Maryland
College Park, MD 20742

May, 1988

Abstract

We study a two-dimensional reconstruction algorithm due to D.C. Barber and
B.lH. Brown, applied to a linearized electrostatic inverse problem. Firstly we demon-
strate how this algorithm fits within the framework of inverses of generalized Radon
transforms studied by G. Beylkin. Secondly we construct an iterative improvement
of the Barber-Brown algorithm based on the conjugate residual method. We present
several numerical results obtained with this iterative algorithm. .

1 Introduction

In electrical impedance imaging one seeks to reconstruct the internal conductivity (or
impedance) profile of an object from boundary measurements of voltages and corre-
sponding current fluxes. There has been significant advances made in recent years on
both practical aspects of the reconstruction problem [2, 3, 11, 16, 17] as well as on the-
oretical aspects of the uniqueness and continuous dependence question [1, 10, 14, 15,
18]. We shall not attempt a review of the literature; the reader may consult [6] for an
extensive list of references.

One particular algorithm which has bhown itself to be surprisingly effective given its
low cost was developed by D.C. Barber and B.H. Brown [2, 3] for use in the context of
medical tomography. In this paper we analyze the Barber and Brown method in some
detail. In particular we show that the crucial backprojection component of the algorithm

*Research partly supported by ONR contract N-00014-85-K0725 and NSF-AFOSR grant DM5-
8720428

tResearch partly supported by ONR contract N-00014-85-K0169, NSF grant DMS-8601490 and the

Sloan Fo{andation
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may simply be viewed as part of an approximate inverse of a generalized Radon transform,
as studied extensively by Beylkin [4, 5].

The Barber and Brown algorithm has already been compared numerically to several
other algorithms [19] and appears quite exceptional in achieving a moderate accuracy at
an extremely low cost. In the latter part of this paper we construct an iterative extension
of Barber and Brown's algorithm based on a conjugate residual method. This new algo-
rithm can achieve a significantly higher accuracy at a modest increase in computational
cost.

In the analysis and computations of this paper, we restrict ourselves to a circular
domain and consider only the linearized identification problem. We are currently in the
process of implementing the iterative algorithm for the full nonlinear problem on an
arbitrary polygonal domain. Results from this work will be reported elsewhere.

The paper is organized into seven sections. In Section 2, we give a brief description
of the electrical impedance problem, and review Barber and Brown's backprojection
scheme. In Section 3 we show how the Barber and Brown backprojection fits within
the framework of approximate inverses of generalized Radon transforms, constructed by
Beylkin. We also examine the relation between the linearized elliptic forward problem and
a generalized Radon transform. Section 4 provides a discussion of our implementation of
the Barber-Brown algorithm. In Section 5 we study properties of the conductivity-to-data
map and its composition with the backprojection; in particular, we perform an eigenvalue
analysis to study the sensitivity of these maps. This study leads to the development of
an iterative algorithm based on a conjugate residual method, as presented in Section 6.
Results from our numerical experimentations with the iterative method are displayed in
Section 7.

2 The linearized inverse problem-A backprojection
reconstruction

As a mathematical model for the direct current electrostatic problem, we suppose

V-(yVu) = 0 in Qt (1)
au

y- = i on O9,

where u is the voltage potential, 4 is a boundary current, and y denotes the conductivity

profile. The linearized problem for a small perturbation 6y (of y) and corresponding
perturbation 6U (of U) now becomes

V -(-yV6U) = -V - (6-yVU) in Q2,
0(6 U) ou

A-U)n =  -6"rl on cQ.

In the remainder of this paper, we shall for simplicity assume that sion For

(i) Q2 is the unit ball, Q2 = {z E !R2 : IX[ < 1}. GRA&I

(ii) -Y M=1. ced

ton_
We take U to be a dipole solution, more specifically U solves

AU = 0 in Q2, (2)
OU I- -w-6 on 0£2, ._vdilability Codes

OnJAvall and/or

2 ulst Special
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where 68,,/Or is the counter clockwise tangential derivative of a Dirac delta-function,

6,,, w E &Z£. We furthermore assume that

(iii) 67 = 0 near the dipole.

Under assumptions (ii) and (iii) the linearized problem reduces to

A6U = -V( 6 -t) -VU in Q, (3)
U) = 0 on

On

The original problem in electrical impedance imaging is to determine a consi-tent Y,
given knowledge of ulan (the solution to (1)) for various choices of k. The linearized
inverse problem associated with (3) therefore becomes

(I P) Given 6Ulon for various choices of dipole solution U, determine a consistent in-
crement 67.

We use the notion consistent, since of course none of these inverse problems can
be expected to have a unique solution given only a limited set of choices of boundary
fluxes. The algorithm of Barber and Brown represents an ingenious one step approximate
solution to the problem (I P). To explain the algorithm we briefly review its derivation
(along the lines of [3]).

Since £2 is the unit ball, the solution to (2) is known in closed form:

U -- with z'- =w.X, W= - X,

where w1 = (-W2, l) is the 7r/2 rotate of the dipole location w = (wI, w 2 ). The function

V 2

X1 ± 2

is a harmonic conjugate to U on 2. Indeed, z -* (U, V) (the so-called Poincar6 map)
conformally maps S1 onto the upper half plane P = {V > 1/2}. The problem (3) simplifies
in the (U, V) coordinates to read

A6U = -() in P (4)aU
O(bU)8(6V = 0 on OP={V= 1/2}.

Note that the function 6y = 6y((U, V, w)) is now a function of U, V and w. The extra
data being used to reconstruct 6y is the function 6UIv=1/ 2 (a function of U and w). For
a single fixed dipole location wo, a consistent conductivity increment 670 is given by

6"0(a) = u

as follows easily from (4). Barber and Brown suggest the average

J ( ) - I f ( - -bu IV = 1 2 )( , w)l,= u( , ) 4 ( , w) ds , ( 5)

; a rough approximation to the conductivity incremcni ,- (b i of course noL ili gcIeeal
consistent with any dipole measurements).

3



The formula (5) has a geometrical interpretation illustrated by Figure 1. Given a
point z to be imaged, and a dipole location w, consider the equipotential :ircular arc
{z : U(z,w) = U(z,w) = s} which originates at w and passes through z. The point
where this equipotential arc intersects the boundary is x(s, 1/2,w) (in U, V coordinates,
for fixed w, it corresponds to U = s, V = 1/2). The first term in the integrand is the
known quantity ("-U/--U)(x(s, 1/2, w), w) (see (6) below).

X2

The i/2, )

°~ ;t

ta g n ot e c r eU(z,w) = U x w tz a d)h etr( , ) De ot by 9 th a gl

1z: UZW=(')s

ti Figure In this picture, the dipole is located at , the equipotential arc through x is displayed.

~The intersection of the equipotential arc with the boundary is x(s, 1/2, W).

The weight -t is selected in a very particular fashion. Let p be the angle between the

tangent to the curve U(z, w) = U(, ) at x and the vector (0, 1). Denote by 0 the angle

between (0,-1) and w (cf. Figure 1). The function 0(x, w) equals IOp/O(x, ()1, so that

S(xw)dS,, = Ib (,w)1d = dp,
(for a fixed imaging point x). Therefore, the average in (5) is exactly

1 2 
w

- 1 0> (-6UlV=1/2)(s, w)Is=uc(,w)dp,

which corresponds to a uniform distribution of angle p (not 0).

It is not difficult to see that

CZ@(,w) = 2V(x,w) - 1 (6a)

and

(.. 6Ulv=/2)(sw) = (-.U/-U)(x(s, 1/2,w), w). (6b)
or Or

Indeed, in Figure 1, p = p' - 0 and so

Op Op'

On the other hand in the x' coordinates (for fixed w) the tangent to the curve
{z: U(z,w) = U(z,W)} is

(V ,U)' ( 2 z x2 ) /2 X 2)

I.l 
=  '2 A +

1111L11 O 1 1111iM1,11 111:1



aud therefore
12 12

1 X2 _X 244___Cos P X,1 + X sinp -, 1 7

Differentiation of the first formula in (7) yields

Op 0fz~_zI'./isin 1 (14' z 2.

and a simple computation, using

X, 0, I

now gives

9 =2 - 2V.

Consequently

_p 1 2 V(x,w),

which immediately leads to the formula (6a).

The formula (6b) represents a simple change of variable, since

0 VXbU -V"' U0 0
( U-UI=12)S')= (x(s, 1/2, w), w) = (-bU/ -U)(x(s, 1/2, w), w),(~6 Uv~,2(s) IV.,UI2  Or 0Or

where 0/Or is the counter clockwise tangential derivative and x(s, 1/2, W) is as in Figure

The Barber and Brown average may now be written

B ~ ~ 0 r 1,wWx)~(w( - 2V(x, w))dS,. (8)

Except for a filter, which we shall briefly discuss later, the calculation of the integrals
(8) represent exactly the reconstruction method suggested by Barber and Brown. In the
following section, we explain how (8) may be seen as part of an approximate inverse for
a generalized Radon transform.

3 The generalized Radon transform and its inverse

The function
= II Ux,/j.),x E , E IR2 \ joy

is positive-homogeneous of degree one:

it is also infinitely often differentiable in Q x (&R2 \ {0}) and

V,-O(x, ) 00 Vx E Q, Ell?2 \ {01. (10)

The function ql defines a family of arcs (parts of circles) to be used for the generalized
Radon transform

5



As a measure on each arc ,, we take

dp

where da denotes standard arclength; we let a denote the amplitude

a(X,w) = IV.,(z,W)I. (11)

Following the notation in [41 we now define a generalized Radon transform

(Ru) (a,w) f u(x)a(z,w)dpi (12)

=',.u(x)IV..,(x,w)Ida

for any u E Cco(QZ).

Beylkin provides a recipe for the approximate inversion of transforms like that in
(12). His main assertion is that

R*KR =id +T, (13)

where T is compact: L2(Q2, compact) - L 2(Q, loc) and R* is the so-called backprojection

*(R*v)()j ~ ~)=0.)S (14)

K consists in convolution with the generalized kernel

k(s) = (~)iIrleirsdr. (15)

The function h is given by

h(x, ) -=det( aoX

The weight h(x,w)/a(x,w), Iwi = 1, appearing in R* has a very simple relation to
j0p/OOl 2V - 1 (cf. Figure 1).

Lemma 1

h(x,w)/a(x,w) = 2V(x,w) - 1, x E Q2, Iwi 1

Proof

Using polar coordinates (rf, Of) in the -plane, we get

h(x, w) a [-V.0,)' -Vs, 4)](x, w)

for Iwi = 1. Since 4' is positive-homogeneous of degree 1 and since Of is the same as the
angle 0 (corresponding to w = /Jjin Figure 1) we get

ao

Note that the formula (16) only involves the function O4x,w), jwi 1, due to the fact
that differentiations with respect to 0 and x are performed with rf = constant=

6
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As before, let x' denote the coordinates related to x by the orthogonal affine trans-
formation

where Q9=(W-) cos 0 sin 0

Then V: = V. and from (16) we therefore get

h(x, w) =(QT'V.,,0)_ a(Q)V4)(z)
-I'I

2 + (~'.(17)

Division by a = IV. 01 = IV,.',I 2 yields

a(z) I + (V.) (xW) (18)

The function 0, satisfies

and ax'/aO x' - 1, ax/80 -x'. A simple calculation based on (18) now leads to

h(x, w)/a(x, w) = 2 x2 2,- 1

= 2V(x,w)-1.

0

Remark 3.1

We note that in his paper [4], Beylkin assumes that the phase function 4) is odd
with respect to the variable 4 (he assumes that 4, is not just positive-homogeneous, but
homogeneous of degree one). The only place this is used in an essential way is in the
calculation of the splitting of the Fourier Integral Operator F, on page 583. F is given
by

Fu(y) =j 1 G(y, w) dSw,

with

G(y, w) = *(jiYr)A(y,rw)u(x)dx~ rdr,

and

iI'(~y,) =4,(,~)- '~lI~),A(x,y, ) = a (x, fT) h (y,)
a(y, T.)

If -0 is not necessarily odd with respect to , then a slightly different calculation gives

G(y, w) 1 (2)f -irO y,.) L rdr (Ie0-"a(x,w)u(x)d1

(21r) 2 J(, a(y, w' n~

and therefore

Re(G(y, w)) I -....... eir,(sl-) r~~w Idr (J e2'Ru(s~w)ds)

7



provided u is real. In other words

Re(G(y, w)) =(Y wK R(u)Qk(y, w)),
a(y, w)

where K represents convolution with the generalized kernel

1 00f le "r
Theforul tht orrspndsto2(27r) 2  _.I~e~r

The ormua tat crrepond to(3.3) on page 584 of [4] in this case becomes
Re(Fu(y)) = R*KR(u)(y), (19)

provided u is real. There are no changes required to show that

F = id + T (20)

where T is compact: L2 (j2, COmp) -~ L2(f2,loc). Based on (19) and (20) we immediately
conclude that

R*KR = id +
where !Pis compact: L2 (Q, camp) -L 2 (fl, c). 0

Let W denote the function

W(S,W) = -- 1(-U/-U)(x(s, 1/2, w), w)
27r 49 Or

From Lemma 1 we immediately get

(R* W)(.T)

=~~-~ ' j(-U-U)(x(s, 12,w), w)I,=u(.,)(1 - 2V(x, w))dS,.

We shall shortly verify that

W zzKR(6-1) ( in avery crude sense). (21)

We therefore conclude that the Barber and Brown average

I (-U/-,U)(z(s, 12Wl 1 U~) -2V(x, w))dS, R*W(x)
21r 1 Or r

SR*KR(6-y)(x)

::; 6 YX

may be viewed as a crude first approximation to 6-y(x). We find it quite remarkable that
Barber and Brown by purely heuristic arguments were able to find the "right" wveight
(2V - 1) for their backprojection.

We complete this section by showing (21). The function

G(u0 ,v0 )(U, V) 47 (+ (U- UO) 2 T+(V - V0)2 + (U - UO)2 +(V + V0  ))

V0 > 1/2, solves

/G(u,VO) = 0 -- (u,, in P = Rx (1/2, oo)

-VIO on 49P={IV =1/2).

8
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It follows from this and (4) that

6U(U, V, W) = jO 00 G(U* v')(U, V)b 7 (U', V', w)dV'dU',

and consequently

-(3-jUlV=12)(S, w)

= - Icc 1/2 -Gu,v'(s, 1/2)6-y(U', V', w)dV'dU'

I 1/2 (1/2 -VI) 2 _(S U9)26 7
U') 2 + (1/ V', w)dV'dU'. (22)

Fourier transformation of .(22) with respect to s leads to

a9 b=V12^rW 1 IrI e-(V' 12)1,-l6y^(r, V', w) dV'; (23)

here we have used the fact that

q2 
- u 2  ~A f q2 - u 2  

- qr(( 2+U 2)2 Jc(q 2 + 2 2 erUdU =il-e q >0.

If we replace e-(v'1/2)TI by its value at r = 0 (or V' = 1/2) then (23) reads

8(7bI=1)^rW 1 (f/c2cb- I(-, V', w) dVi) ̂ (r),

or equivalently

- 6U1V12)(SW) 2rK(] 67(-, V', w)dV')(s), (24)

where K represents convolution with the generalized kernel

1 C rcc ror
2(2r~2' lrsr

According to (6) the left hand side in (24) is exactly

and by a simple change of variables

fj /02-y(s, V', w)dV' =f.' 6-y(x)V.,U(x, w)ldo, = R(67)(s, w).

Therefore1( L96 1 U ( s,1 2 w) w) _ K (5y s )
Tr r T

as stated in (21).

Remark 3.2

We note that the approximation (21) is best for smooth 67y or 6-y wvhose "singularities"
lie not too far from the boundary. For 6-y with "singularities" near the center (21) repre-
sents only a very crude approximation. In contrast the approximation ThKR(67y) 2Z 6-,
seeks to fit "singularities" and represents only a very crude approximiation for smooth
6-y. This difference in the nature of the approximations, we believe, is the main reason
that the Barber-Brown backprojection, R*W, in itself only gives a crude approximation
to 67f. 0

9
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4 Implementation of the backprojection and
the Barber-Brown filter

This section contains a description of the numerical implementation of the backprojection
discussed in the previous section, including a brief description of the spatially dependent
filter, which is used to improve the reconstruction.

Let zb denote the point Xb = z(s, 1/2, w) on the boundary of the unit circle obtained
by solving

U(z,w) = s, with IJx = 1, (25)

for a specified s and w. The data based on which we seek to reconstruct 6Y is

W(s,w) :=-- 6 U/-U(xb,w).

The backprojection formula (8) amounts to

B(x) =lW(s," %=u(,')(2V(xw) - 1)dS,.

The discrete approximation to the back projection is represented by a matrix, for
* simplicity also denoted 3. For the iterative scheme we will need the entire matrix B not

just its action on individual vectors.

We assume that the experimental setup contains m electrodes. The midpoints be-
tween electrodes are numbered 1 through m (see Figure 2). A pair of adjacent electrodes
through which input current flows (in and out respectively) is called the driver pair. As
a realization of a dipole at location 1, we select the driver pair to be the two electrodes
adjacent to location 1. We measure voltage differences on all electrode adjacent pairs.
The rescaled values of these differences represent our discrete data corresponding to a
dipole at location 1. As pointed out by Barber and Brown it is often not possible to
obtain reliable values of the voltage tangential derivatives at the dipole location, and the
locations adjacent to it (in this illustration, locations 1, 2 and m). This is because mea-
surements of voltages at the driver pair tend to be inaccurate. They suggest filling this
data gap by extrapolation from neighboring measurements. In our numerical simulation,
we assume that the tangential derivatives of the voltage have been obtained at locations
adjacent to the dipole location, and use the fact that the quantity W in the limit of a
perfect dipole is zero at the dipole location (see (22)). To obtain the complete data set,
we cycle through all possible driver pairs.

* The integral above is replaced by a sum over all driver pairs. Thus the discrete version
of the backprojection is

1_ E, W(s,wj)Iou( ,,)(2V(x,wj) - 1). (26)
i rn

Notice that the point xb on the boundary, which satisfy (25) for s = U(x,wj) may not
lie at a measurement point. Hence interpolation of the data may be necessary.

10
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2

aFigure 2 The pixel being illuminated has index i with corresponding location . The driver
electrodes are the pair adjacent to 1. This experiment generates a dipole at 1. Collected

measurements at the numbered locations produce the data WI, W2, W3, - *)dipole at I. The
equipotential through x intersects the boundary at b at angle o

b . The indices of the
electrodes neaircar e and 1 + 1.

To represent the data discretely, we use an m vector w. The index on w locates a
dipole and a point on the circle at which the tangential derivative of the potential is
measured. The value at that index represents the quantity W. The vector w consists of
m m-vectors. Each vector corresponds to one experiment, that is, it contains the ratios
between the measured tangential derivatives and reference tangential derivatives at all
measurement locations for a fixed dipole. Thus

Fo = [( , W , 3...)disoe , le u , (tae Wt , we ... )dipole is2, doated at ne 1

The original circular domain, l 1, is embedded into [-1, 1]X [-1, 1 for convenience
of graphics. The extended domain, which we call the image domain, is discretized so that
there are n 2 pixels of size 2/n by 2/n. The conductivity perturbation 6( p) is replaced
by an n vctor, for simplicity also denoted by 6-. The index on the vector 6 locates
a pixel in the image domain, and the value at that index represents the conductivity
increment at the center of the pixel.

The backprojection matrixi3 takes a vector in flr"  and maps it to f? "2. The rowvectors of b which correspond to pixels outside of JxJ < 1 are set to zero. We compute
the matrix b by rows. To describi: the computation of B, let us take a pixel indexed by
i, centered at . The procedure outlined below is based on formula (26).

For illustrative purposes, let us take the case when the dipole is located at index j = 1.
With this dipole location, we can calculate the first m-entries of the ith row of b. Our
computational experience, as well as that of Barber and Brown, suggests that a certain
smoothing is required. This smoothing is accomplished by imaging several points xk ,

neighboring , and then replacing the terms W(s,j)J,=U(,,,') in (26) by tie respective~averages over the points z . As a common weight we use the value of (2V - 1)/m at tihe

point x.



At xk , we have
Uk = z)/((Xk)2 + (Xk + 1)2),

V = (_k + 1)/((a4)2 k + 1)2).

The weight at z is

wt = I( 2(X2 + 1) 1 )
2r z + (z2 + 1)2

A quick calculation shows that the equipotential arc connecting the dipole location I and
Xk intersects the circular boundary at

A = 4Uk/(4(Uk) " + 1),

2 = 2/(4(Uk) 2 + 1)-i.

From this, we calculate the angle 0b to be

It is now simple to identify the indices 1 and I + 1 corresponding to measurement
locations between which the point z b lies. Linear interpolatirnn gives factors

ft = (ob - 01I:O,

fi+1 = (01+1 - Ob)/,O,

corresponding to 1 and I + 1 respectively.

In summary our algorithm for constructing the first m entries of the ith row of the
matrix B is:

1) for each point xk

a. initialize the m-vector workk to zero

b. compute 0b and identify indices I and 1+ 1

c. in the vector work' set the lth and the 1+lth entries to ft and fi+l respectively

2) form the average of all the vectors work k and store result in the vector work

3) calculate the weight wt and multiply work by wt

The resulting vector comprises the first m entries of the ith row of f. The scalar multipli-
cation of this row vector with the first m entries of a data vector w is the contribution of
the (averaged) operation (26) for j = 1 at the image point i. To find the next m entries,
move the dipole to location 2 and carry out the same calculation.

In our implementation, we take m = n = 16. However, in order to obtain an accurate
B, we initially calculate it for m = 64. The resulting matrix is postmultiplied with an
interpolation matrix such as to make b a 256 x 256 matrix. Tl', interpolation is linear.

To achieve a desirable level of smoothing, we take 25 points xk; these points make up a
regular stencil covering an area the size of the pixel centered at x.

The matrix 1 was used in Barber and Brown [3] to reconstruct point images at various
positions in the circle. It was noted that the reconstruction had limited resolution, and it
was also noted that the resolution depended on the position. In order to focus the recov-
ered image, they designed a position dependent filter. The construction of tills filter is
purely heuristic, and some of the parameters are arrived at by experimentation. However,
we cannot overlook its effectiveness and so we have included it in our implementation.

12
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Briefly described the filter works as follows: for a fixed pixel at location z one con-
structs a combination of a rotation and a conformal map in order to map the unit ball
to itself and map z to the origin (the rotation takes z to Ixl on the positive real axis,
the conformal map is now z - (z - Izl)/(1 - z ixi), using the natural identification of
&2 and Gl ). In the new copy of the unit ball one computes the effect of convolution
of the transformed 3w-values with a Gaussian distribution centered at the origin (one
actually only computes the convolution at the origin, the point which corresponds to
location z). Finally the filtered Bw-value at the location x is taken to be cl.(original
Bw-value)-C 2.convolution. The constants cl and c2 are empirically chosen to be 16 and
15 respectively! For more details we refer the reader to [3].

We used Barber and Brown's code without changes to calculate this filter matrix,
which we denote by F. The premultiplication of B by F gives what we call the filtered
Barber-Brown backprojection, denoted here by

B =Fb.

Thus given a data vector w, corresponding to an experiment, we find a rough reconstruc-
tion through 67 %, Bw. Numerous simulated reconstructions using the matrix B can be
found in [3].

5 Properties of the conductivity-to-data map and
preconditioning

The forward map, which takes conductivity perturbations 67 to voltage data w through
the approximate solution of (3) will be denoted by E. With the discretization described
previously, this map is an m 2 x n2 matrix, operating on an n2 -vector 67 to produce an
M2-vector w. To construct this matrix, we use the Green's function discussed in Section
3 and numerical quadrature.

With this notation, the inverse problem we wish to solve can be stated as a system
of linear equations in 67

E67 = w. (27)

Here, the vector w is the measured (or synthetic) data.

Numerical results reported in [3], and our own experimentations with the filtered
Barber-Brown backprojection on synthetic data, lead us to believe that B is a crude
approximate inverse to E. Thus we are led to consider an alternate problem

BE 67 = Bw. (28)

How well one can solve (27) and (28) depends on the properties of E and BE, and
the method employed for the solution. We are ultimately interested in solving the full
nonlinear problem described in Section 2. A reasonable approach to such a problem is to
use a Gauss-Newton method, where at each step, we need to solve a linear system very
much like (27). However, this step is necessary only to obtain an update towards the final
solution. Thus in the early stages of the Gauss-Newton method it is often sufficient to
solve the resulting linear system only approximately (cf. [7]). With this in mind, we rule
out direct methods for the solution of (27) and (28), and consider only iterative methods.
Of particular interest are conjugate direction algorithms (121, which we expect will yield
a good approximate solutions to (27) and (28) in a small number of iterations.

Since E will not in general be square, it is natural to consider the normal equation

ETE 67 = ETw (29)
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in order to use a conjugate direction method. We could in principle use an algorithm of
Hestenes [13] which avoids forming the normal matrix explicitly. However, regardless of
the choice of the algorithm the problem solved is that of equation (29). The conditioning
of this solution procedure (convergence rate of the iterations and sensitivity of the solution
to noise in the data) depends on the eigenvalues of ETE.

Consider now the problem (28). BE is a square matrix of order n2 , but it is of course
not symmetric, which leads to difficulties with many conjugate direction methods. The
conjugate residual method (CR) is a special example of a conjugate direction method
which is guaranteed to converge for any square system, provided the matrix has definite
symmetric part. As will be seen later, the symmetric part of BE is not exactly definite,
however nearly all of its large eigenvalues have same sign (positive). In practice this
should insure that conjugate residual applied to BE will converge for a wide range of
initial guesses. From the point of view of computation, this method is advantageous
because it works on the matrix BE and not the matrix (BE)TBE. The eigenvalues of
BE may be viewed as determining the conditioning of this solution procedure [9].

We are only interested in the action of E and BE on vectors corresponding to images
contained in the unit circle. Therefore we remove columns of E, and columns and rows
of BE corresponding to pixels lying outside the unit circle.

For m = n = 16 we have 256 pixels of which only 208 corresponds to locations inside
the circle. We computed the eigenvalues of the symmetric part of the matrix BE and
found that of the the moderate to large size eigenvalues, all except for one are positive
(see Figure 3a). The eigenvector corresponding to the negative eigenvalue is displayed
in Figure 3b and seems to represent a constant background with perturbations near the
boundary. The difficulties posed to the conjugate residual method by the presence of this
"bad" direction can be avoided if one restricts 6"7 to be supported sufficiently far away
from the boundary.

In contrast, the symmetric part of E has about equally many large positive and
large negative eigenvalues. This explains why even in the square case we cannot apply
conjugate residual successfully to E alone.

As pointed out earlier, we believe that the eigenvalues of ETE and BE provide in-
formation about the conditioning of our solution procedures for problems (27) and (28)
respectively. The eigenvalues of ETE are displayed in Figure 4. The fact that the eigen-
values beyond the 62th are all less than I0 - 3 reflects the illposedness of the problem.
The largest eigenvalue is 1.958. The moduli of the eigenvalues of BE are shown in Fig-
ure 5 (BE, being nonsymmetric, has some small complex eigenvalues starting with the
73rd). We find that the conditioning is somewhat better here; the largest modulus of any
eigenvalue is 1.080 and eigenvalues whose moduli are less than 10- 3 begin with the 87th.
The tapering off of the eigenvalues in both cases indicates that some resolution loss in
reconstructing 67 is inevitable.

Let gj denote the eigenvectors of ETE, with the corresponding eigenvalues in de-
scending order. The iterates of conjugate direction algorithms in practice often appear to
be related to projections of the true solution onto the span of {gj,}j=1, j for increasing
J. Therefore it is instructive to consider the projections of a fixed vector onto the span
of , Let hj denote the eigenvectors of BE. We also consider the projections
of the same fixed vector onto the span of {hjj=1,...,j.

We take a profile whose entries are zero except for one corresponding to the pixel
whose midpoint is (0.0625, 0.0625). We project this profile onto the space spanned by
the , for J = 30 and J = 100. The results are shown in Figures 6a and 6b.

It is not clear if any iterative method will get as far as J = 100 because the 100th
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eigtiivalue of ETE is of the order 10- 7 . In some sense Figure 6b gives an indication of the
the minimal resolution loss to be expected. Notice that with J = 30, the projected image
is very far from the point profile. Indeed the Barber-Brown methn. produces a superior
image using noiseless synthetic data generated from the point profile (compare Figure
6a and Figure 7). There are two eigenvalups of BE with nonzero imaginary part among
the first 100 (the conjugate pair corresponds to number 73 and 74). The projection of
any real vector onto {hj}j=,...,,J < 100, must therefore be real except for J = 73.
We project the same point profile as before onto the space spanned by {h,}i=j,...,j for
J = 30, 100. In both cases the projected image is superior to the projected image using
the eigenvectors of ETE. (compare Figure 6 with Figure 8).

We believe that this numerical study indicates that the iterates of CR for equation
(28) will converge faster and ultimately get closer to the a consistent profile than the
iterates of CR when applied to the normal equation (29).

To separate the effects of the filter from the backprojection, we also computed the
eigenvalues of the symmetric part of B3E. We found that the eigenvalues are similar in
structure to those of the symmetric part of BE (only one large negative eigenvalue). The
presence of the filter does however increase the size of the eigenvalues.

0
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Figure 3 (a) The eigenvalue distribution of the symmetric part of the matrix BE. (b) The
eigenvector corresponding to the single large negative eigenvalue.
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Figure 4 Plot of the distribution of the eigenvalues of ETE. The largest eigenvalue is 1.958,
and the eigenvalues beyond the 62nd are less than 10-3.
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Figure 5 Plot of the distribution of the moduli of the eigenvalues of BE. The largest modulus
is 1.080, and the eigenvalues beyond the 87th have moduli less than 10-3.
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Figure 6a A point image is selected, with all pixels zero except at location (0.0625, 0.0625)
which has value 1. This image is projected onto the span {g, j = 1, ... , 30}. The eigen-
values have been arranged in descending order, gi is the jth eigenvectors of ET E. The
maximal value of the projection is 0.0213, the minimal value is -0.0170.

Figure 6b Projection of the same point image as used in Figure 6a onto the span {g., j =
1,..., 100). Maximal value . 0.2970, minimal value = -0.0522.
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Figure 7 The Barber-Brown reconstruction of the same point image as used in Figure 6 based
on simulated data. Maximal value = 0.0623, minimal value = -0.0015.

1
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Figure a Projection of the same point image as used in Figure 6 onto the span fh=,
1.. ,30). Compare to Figure 6a. Maximal value = 0.1033, minimal value - -0.0254.

Figure 8b Projection of the same point image as used in Figure 6 onto the span {h3, j -
.1... ,100}. Compare to Figure 6b. Maximal value = 0.5715, minimal value = -0.1105.
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6 An iterative refinement for the reconstruction

The conjugate residual method [8, 9] solves the following linear equation:

Ax= f,

where A is a square, but possibly nonsymmetric, matrix of order N with definite sym-
metric part. Suppose the initial guess is zo and the initial residual is ro = f - Axo. The
iterates xi are ideally obtained by minimizing

IIAxi - f 11

over the translated Krylov space

a0 + {r0, A 0 ,.. ., A'-lr}.

The minimization is performed by consecutive line searches in directions that satisfy the
conjugacy conditions

(Apj,Api)=O, for j i.

In practice, for a nonsymmetric matrix A, one does rarely satisfy all the conjugacy
conditions above. The version of the algorithm we have implemented in general only
guarantees that (Api-1, Api) = 0. This version is:

(i) choose an initial guess Zo.

(ii) compute the initial residual r0 = f - A xO.

(iii) set search direction P0 = r0.

(iv) for i = 0 step 1 until convergence do

(a) a, = (ri, Api)/(Api, Ap1 )

(b) xi+1 = xi + aipi

(c) ri+ I = ri - aiApi

(d) bi = -(Ari+1, Api)/(Api, Api)

(e) Pi+l = ri+l +" bipi

Although this version of the conjugate residual method does not guarantee that all the
conjugacy conditions (Apj, Api) = 0, j 9 i, are satisfied, and therefore in general does
not give iterates which minimize the residual over the relevant translated Krylov spaces,
this version is known to converge when applied to matrices with definite symmetric part.
We refer the reader to [8, 9] for a detailed analysis.

For the solution of (29), we simply set A = ETE, and as the intial guess, we take the
filtered Barber-Brown backprojected image.

For images 6y supported near the boundary, one encounters instabilities by a direct
application of CR to (28) with A = BE. We see this as a manisfestation of the presence
of the "bad" search direction corresponding to the large negative eigenvalue (cf. Figure
3). To eliminate this difficulty, we set to zero all rows and columns of BE corresponding
to pixels outside a circle with a priori prescribed radius r < 1. In matrix notation, this
corresponds to post- and premultiplication with a matrix l,. obtained from the identity
matrix by setting to zero the columns corresponding to pixels outside r < 1. In our
implementation we apply CR with A = fl,.BEII,, for an appropriate choice of r, and
we take the filtered Barber-Brown backprojected image as initial guess. If the image 67
is not supported near the boundary, one may use r = 1 without any difficulty. If r is
accidentally chosen too small, it is quite easily recognized by the failure of the residuals
to become small.
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7 Numerical experiments

We conclude this paper with some numerical results. In Section 5, we made a prediction
that of the two problems,

ET E 6y= ETw (PI)

BE 67= Bw, (P2)

the latter is more well-behaved. By this we meant that the iterates of the CR algorithm
applied to equation (P2) should converge faster and ultimately get closer to a consistent
profile than iterates of the same CR algorithm applied to (P1).

To verify our prediction we show the results of computations with two representative
test profiles. In both cases the data is generated by a multiplication of the test profile
by the matrix E, i.e., by modeling perfect dipoles at the numbered locations in Figure 2,
and solving the perturbational equations (3) through the use of the Green's function and
numerical quadrature. The data is in the range of E and noiseless (to roundoff errors).

In our first test the profile used is shown in Figure 9a. The profile represents a ring-
shaped high conductivity perturbation with a ridge across (the ridge has only half the
strength of the outer ring). The ring is not circular, its thickness varies and it is off center.
In Figure 10a we display the relative problem residual

liE 67, - wll/llwlI

versus number of iterations of the CR algorithm for both equation (P1) and (P2). 1) 11
denotes the Euclidian norm. It is clear that the residuals in the case of (P2) are smaller
than in the case of (P1) (by about a factor of 1/2 at the 30th iterate). This is also
reflected in how well the iterates match the "correct" profile 6y. In Figure 10b we display
the relative error

- 6- l/11l6Y11,
versus number of iterations of the CR algorithm for both equations (P1) and (P2). At
the 30th iterate the error in the case of equation (P1) is about 41% where as in the case
of equation (F2) this has been reduced to around 23% (a slightly smaller reduction than
for the residuals). Most impressive to observe is how much faster the CR iterates for (P2)
converge during the first 6 steps when compared to those for (PI).

For further comparison we examine the reconstructed profiles at the 30th iteration.
For reference we show the filtered Barber-Brown backprojection (initial guess for the
iterative schemes) in Figure 9b. The 30th iterates for (P1) and (P2) are show in Figures
9c and 9e respectively. Notice that the ridge is recovered in the case of (P2) while it is
still not visible in the case of (P1). In fact the ridge begins to be visible in the 5th CR
iterate of (P2). Figures 9d and 9f are greylevel plots of the same profiles shown in Figures
9c and 9e respectively. The ridge is clearly visible in 9f whereas it is not seen at all ill
9e. In the computations of the CR iterates for (P2) we used a cutoff radius of r = 0.85
to avoid instabilities, as described in the last part of Section 6.

Our second test involves a profile in the form of two rings, one twice as high as the
other, as shown in Figure Ila. We display the relative problem residual (Figure 12a) and
the relative error (Figure 12b) versus the iteration number. Again the CR iterates for
(P2) perform significantly better than those for (P1), especially in the first few steps.
Figures 1lb, 1lc and Ile show the filtered Barber-Brown backprojection, the 30th iterate
of CR applied to (P1) and the 30th iterate of CR applied to (P2). Figures lid and 11f
are the greylevel plots of the profiles shown in Figures 1 ic and Ile. Notice that the holes
(the areas of low conductivity inside the rings) are recovered in the case of (P2) (in fact
they are already visible in the 7th iterate), while they are still invisible in the case of
(P1). Since this profile is supported further away from the boundary than the profile
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used in the first test no cutoff is necessary in the computations related to (P2) (cf. the
end of Section 6).

These two tests, and several others we have performed, indicate that B acts as a rea-
sonably good preconditioner for the original problem. It is fortunate that BE is positive
definite except for a single (controllable) direction. This allows us to use CR on (P2).
It remains to be seen whether BE retains the same property when E corresponds to a
background conductivity which is not constant. If this were the case, then we can con-
struct a relatively efficient and accurate scheme for the full nonlinear problem (compared
to output leastsquares).

In summary we conclude that the CR algorithm applied to the equation BE67 = Bw
gives an iterative method which

1) allows us to significantly improve upon the filtered Barber-Brown backprojcction,

2) performs better than the conjugate gradient or the conjugate residual algorithm
applied to the normal equation ET Eb7 = ETw

(since the matrix ETE is symmetric and positive definite, the conjugate gradient and
the conjugate residual algorithms will behave similarly). We are hopeful that the same
result may be obtained for much more general domains.
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Figure 9a The test profile

Figure Ob Reconstructioii using the filtered Barber-Brown backprojection.
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Figure 9c Reconstruction based on (PI) at the 30th iterate of the conjugate residual algorithm.
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Figure 9d Gray level plot of Figure 9c.
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Figure 9e Reconstruction based on (P2) at the 30th iterate of the conjugate residual algorithm.
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Figure Of Gray level plot of Figure 9e.
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Figure 10a Reduction in the relative problem residual versus number of iterations.
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Figure lob Relative L 2 error in the recovered profile versus number of iterations.
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rigure Ila The test profile

Figure lib Reconstruction using the filtered Barber-Brown backprojection.
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Figure lic Reconstruction based on (PI) at the 30th iterate of the conjugate residual algo-
rithm.
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Figure lid Gray level plot of Figure 1ic.
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Figure lie Reconstruction based on (P2) at the 30th iterate of the conjugate residual algo-
rithm.

Figure llf Gray level plot of Figure Ile.
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Figure 12a Reduction in the relative problem residual versus number of iterations.
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Figure 12b Relative L2 error in the recovered profile versus number of iterations.
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